Kestrel Runtime2019-01-30T18:02:30+00:00

Kestrel Runtime

Big Data application scheduling and load balancing


Heterogeneous computing platforms that take advantage of CPUs, GPUs, and energy efficient FPGAs continue to be adopted as computational needs increase across applications in finance, deep learning & AI, genomics, and machine vision. Integration and management of these platforms for big-data computing frameworks like Apache Spark™ can become a complex task that requires synchronization between Big Data application developers, accelerator designers and system administrators.

By providing managers at both node and global level, Falcon Computing’s Kestrel™ Runtime is a complete accelerator management tool for heterogeneous compute clusters. It provides Apache Spark™ compatible accelerator virtualization, monitoring, queuing, allocation and scheduling.

Kestrel Runtime Performance

Acceleration Simplified

The Global Accelerator Manager (GAM) is built upon Apache YARN and provides global resource allocation within a cluster so as to optimize system throughput and accelerator utilization.

The Node Accelerator Manager (NAM) is built upon Blaze runtime system, which is an open-source project from UCLA that allows Spark applications performance improvement with hardware accelerators. It provides an accelerator virtualization layer for applications and handles accelerator sharing, isolation, and accounting.

Built for ease-of-use

  • Container-based accelerator reservation
  • Virtualization with automatic accelerator allocation and scheduling
  • Simple APIs to invoke accelerators in applications

Optimized for performance

  • Fine-grained accelerator sharing
  • Data caching and data-transfer/computation overlapping
  • Accelerated Machine Learning Lib (MLlib)

Designed with scalability in-mind

  • Support heterogeneous systems including FPGA and GPU
  • Easy integration with application frameworks
  • Built-in integration with Apache ecosystem

Learn More

Kestrel Datasheet

Kestrel Datasheet

Get In Touch

Thank you! The information has been submitted successfully.